

UDC 519.6 (075.8)

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСЧЕТА ТЕМПЕРАТУРНОГО ПОЛЯ В ПЛАСТИНЕ С НЕРАВНОМЕРНЫМ ПОДВОДОМ И ОТВОДОМ ТЕПЛОТЫ НА ГРАНИЦЕ

Л. С. Петрова А. В. Рожкова Кандидат педагогических наук студент Омский государственный университет путей сообщения г. Омск, Россия

THE MATHEMATICAL MODEL FOR CALCULATING THE TEMPERATURE FIELD IN A PLATE WITH UNEVEN SUPPLY AND HEAT REMOVAL AT THE BORDER

L. S. Petrova A. V. Rozhkov Candidate of Pedagogical Sciences student Omsk State Transport University Omsk, Russia

Abstract. The article is devoted to numerical methods for solving stationary heat conductivity problems with programming algorithms implementing the method of finite differences. Article presents a mathematical model to calculate temperature field in a plate with uneven supply and heat removal at the border. The application of grid method using a three-layer implicit difference scheme for solving the Robin problem for Poisson's equation. Presents the finite-difference approximation of the boundary conditions of the third kind Numerical solution of the problem of stationary temperature field in a square plate on the basis of the iterative Gauss-Seidel method is obtained. The realization of the algorithm calculation in MathCAD system with a graphical representation of the results of calculation of the temperature field in the plate is described.

Keywords: mathematical model; temperature field; numerical solution; iterative method.

При описании процессов теплопередачи в тонких пластинах обычно возникают плоские задачи, которые решаются в двумерной прямоугольной системе координат. Уравнение теплопроводности в плоском случае для линейных задач имеет вид:

$$\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) = -q,$$

где T — температура, λ_x , λ_y — компоненты тензора теплопроводности для линейного случая, q — удельная мощность тепловыделения [1, с. 6].

Достаточно часто на практике поверхность теплообмена охлаждается (нагревается) неравномерно, в этом случае плот-

ность теплового потока непостоянна и меняется вдоль поверхности теплообмена (например, экранные трубы в топке котла, обращенные наполовину к факелу и продуктам сгорания, а наполовину к стенке топки) [3, с. 75].

Рассмотрим задачу о стационарном температурном поле в квадратной пластине со стороной $0,021\,\mathrm{M}$ и коэффициентом теплопроводности $\lambda = 52\,\mathrm{BT/M\cdot K}$. При этом мощность источников теплоты $q_{_{V}} = 41000\,\mathrm{Bt/M^3}$. По одной стороне пластины температура среды $t_1 = 270\,\mathrm{^{\circ}C}$, при коэффициенте

Paradigmata poznání. 4. 2016

Empirický a aplikovaný výzkum

теплоотдачи $\alpha_1 = 5200$ Bt/ $M^2 \cdot K$, по трем другим сторонам температура среды $t_2 = 450$ °C, при коэффициенте теплоотдачи $\alpha_2 = 85$ Вт/ $\text{м}^2 \cdot \text{K}$.

Составление математической модели приводит к решению уравнения Пуассона с граничными условиями третьего рода (задача Робэна). Приведем математическую формулировку задачи.

Найти области $D: 0 \le x \le 0,021, 0 \le y \le 0,021$ решение T x, y уравнения стационарной теплопроводности:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = -\frac{q}{\lambda}.$$

При этом граничные условия имеют вид:

$$\lambda T'_{y} x, 0 = \alpha_{0} T x, 0 - Tg_{0},$$

 $-\lambda T'_{y} x, 0,021 = \alpha_{1} T x, 0,021 - Tg_{1},$

$$\lambda T'_x \ 0, \ y = \alpha_2 \ T \ 0, \ y \ -Tg_2 \ ,$$

$$-\lambda T'_x \ 0,021, \ y = \alpha_3 \ T \ 0,021, \ y \ -Tg_3$$

Учитывая, что с помощью встроенных функций relax и multigrid в системе MathCAD решаются задачи только с граничными условиями первого рода, применим для решения данной задачи метод сеток. Заменяя область D сеточной областью, аппроксимируя каждую из частных центральной производных разностной производной по соответствующей координате, получаем разностное уравнение:

$$T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} - 4T_{i,j} = S_{i,j}$$

Параметр тепловыделения определяется следующим образом:

$$S_{i,j} = -\frac{q_v \cdot h^2}{\lambda} = -\frac{41000 \cdot 0,021^2}{52n^2} \approx \frac{-0,3477}{n^2}$$

где n — параметр дискретизации.

Выражая $T_{i,j}$, получаем формулу для вычисления значений сеточной функции во внутренних узлах сетки:

$$T_{i,j} = \frac{S_{i,j} - T_{i+1,j} - T_{i-1,j} - T_{i,j+1} - T_{i,j-1}}{-4}.$$

Заменяя в граничных условиях частные производные конечно-разностными аналогами, запишем сеточные (разностные) уравнения:

$$\lambda \frac{T_{i,1} - T_{i,0}}{h} = \alpha_0 \ T_{i,0} - Tg_0 \ ,$$

$$-\lambda \frac{T_{i,n} - T_{i,n-1}}{h} = \alpha_1 \ T_{i,n} - Tg_1 \ ,$$

$$\lambda \frac{T_{1,j} - T_{0,j}}{h} = \alpha_2 \ T_{0,j} - Tg_2 \ ,$$

$$-\lambda \frac{T_{n,j} - T_{n-1,j}}{h} = \alpha_3 \ T_{n,j} - Tg_3 \ .$$
 Вводя сеточное число Био
$$Bi_k = \frac{\alpha_k \cdot h}{\lambda} = \frac{\alpha_k \cdot 0,021}{\lambda \cdot n} \ ,$$
 получаем фор-

мулы для определения значений темпера-

туры в узлах на границе области через температуру окружающей среды Тд и температуру ближайшего внутреннего узла:

$$T_{i,0} = \frac{Bi_0 \cdot Tg_0 + T_{i,1}}{1 + Bi_0}, \ T_{i,n} = \frac{Bi_1 \cdot Tg_1 + T_{i,n-1}}{1 + Bi_1},$$

$$T_{0,j} = \frac{Bi_2 \cdot Tg_2 + T_{1,j}}{1 + Bi_2}, \ T_{n,j} = \frac{Bi_3 \cdot Tg_3 + T_{n-1,j}}{1 + Bi_3}$$

Полученные формулы используются для описания процедуры расчета значений температуры в квадратной (прямоугольной) области с учетом граничных условий третьего рода на четырех боковых гранях.

Алгоритм решения поставленной задачи основан на применении итерационного метода Гаусса-Зейделя. В основе метода получение последующих приближений из

Paradigmata poznání. 4. 2016

Empirický a aplikovaný výzkum

предыдущих по формулам, позволяющим вычислять значения сеточной функции в рассматриваемом узле [2, с. 197]:

- 1) Задание числа отрезков разбиения области решения по пространственной координате n, параметра тепловыделения $S_0 := \frac{-0.3477}{n^2}$.
- 2) Задание начального условия $Tin_{i,j}\coloneqq 0$, массива $So_{i,j}$, в котором записываются значения параметра тепловыделения $So_{i,j}\coloneqq S_0$.
- 3) Задание значений температуры среды (K) $Tg \coloneqq 543,15$ 723,15 723,15 723,15 T безразмерные коэффициенты теплоотдачи $Bi \coloneqq \left(\frac{2.1}{n} \quad \frac{0.343}{n} \quad \frac{0.343}{n} \quad \frac{0.343}{n}\right)^T.$

4) Процедура расчета температурного поля пластины включает цикл по переменной $iter \in 1$.. maxiter . Максимальное число итераций и точность tol задаются в процедуре. Расчет температурного поля с учетом формул для нахождения значения сеточной функции во внутренних узлах и на границе области реализуется через внутренние циклы по переменным i, j. Вычисления в цикле прекращаются, если максимальная разность в двух последних итерациях принимает значение меньше заданной точности.

Реализация данного алгоритма осуществлялась в системе MathCAD. Результаты численного моделирования температурного поля пластины представлены на рисунках 1, 2.

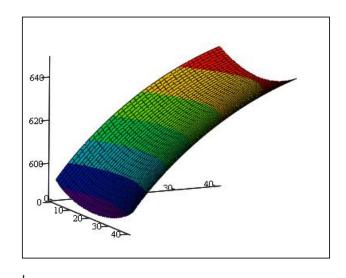
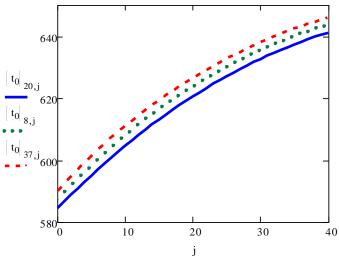


Рис. 1. Результаты моделирования температурного поля пластины



Puc. 2. Распределение температуры вдоль линий i = 8, i = 20, i = 37.

Библиографический список

- 1. Жуков Н. П., Майникова Н. Ф., Никулин С. С., Антонов О. А. Решение задач теплопроводности методом конечных элементов : учебное пособие. Тамбов : Издательство ФГБОУ ВПО «ТГТУ», 2014. 80 с.
- 2. Солодов А. П., Очков В. Ф. Mathcad: Дифференциальные модели. М. : Издательство МЭИ, 2002.-239~c.
- 3. Цветков Ф. Ф., Григорьев Б. А. Тепломассообмен : учебное пособие. М. : Издательство МЭИ, 2005. 550 с.

Bibliograficheskij spisok

 Zhukov N. P., Majnikova N. F., Nikulin S. S., Antonov O. A. Reshenie zadach teploprovodnosti metodom konechnyh jelementov : uchebnoe posobie. – Tambov : Izdatel'stvo FGBOU VPO «TGTU», 2014. – 80 s.

Paradigmata poznání. 4. 2016

Empirický a aplikovaný výzkum

- Solodov A. P., Ochkov V. F. Mathcad: Differencial'nye modeli. - M.: Izdatel'stvo MJeI, 2002. -
- $\label{eq:cvetkov} \begin{array}{ll} \text{Cvetkov F. F., Grigor'ev B. A. Teplomassoobmen:} \\ \text{uchebnoe posobie.} & -\text{M. : Izdatel'stvo MJeI,} \\ \end{array}$ 2005. - 550 s.
 - © Петрова Л. С., Рожкова А. В., 2016